Given what we have covered so far, we can define some fundamental design principles which every distributed system designer and software engineer should know. Some of these may seem obvious, but it will be helpful as we proceed to have a good starting list.
* As Ken Arnold says: "You have to design distributed systems with the expectation of failure." Avoid making assumptions that any component in the system is in a particular state. A classic error scenario is for a process to send data to a process running on a second machine. The process on the first machine receives some data back and processes it, and then sends the results back to the second machine assuming it is ready to receive. Any number of things could have failed in the interim and the sending process must anticipate these possible failures.
* Explicitly define failure scenarios and identify how likely each one might occur. Make sure your code is thoroughly covered for the most likely ones.
* Both clients and servers must be able to deal with unresponsive senders/receivers.
* Think carefully about how much data you send over the network. Minimize traffic as much as possible.
* Latency is the time between initiating a request for data and the beginning of the actual data transfer. Minimizing latency sometimes comes down to a question of whether you should make many little calls/data transfers or one big call/data transfer. The way to make this decision is to experiment. Do small tests to identify the best compromise.
* Don't assume that data sent across a network (or even sent from disk to disk in a rack) is the same data when it arrives. If you must be sure, do checksums or validity checks on data to verify that the data has not changed.
* Caches and replication strategies are methods for dealing with state across components. We try to minimize stateful components in distributed systems, but it's challenging. State is something held in one place on behalf of a process that is in another place, something that cannot be reconstructed by any other component. If it can be reconstructed it's a cache. Caches can be helpful in mitigating the risks of maintaining state across components. But cached data can become stale, so there may need to be a policy for validating a cached data item before using it.
If a process stores information that can't be reconstructed, then problems arise. One possible question is, "Are you now a single point of failure?" I have to talk to you now - I can't talk to anyone else. So what happens if you go down? To deal with this issue, you could be replicated. Replication strategies are also useful in mitigating the risks of maintaining state. But there are challenges here too: What if I talk to one replicant and modify some data, then I talk to another? Is that modification guaranteed to have already arrived at the other? What happens if the network gets partitioned and the replicants can't talk to each other? Can anybody proceed?
There are a set of tradeoffs in deciding how and where to maintain state, and when to use caches and replication. It's more difficult to run small tests in these scenarios because of the overhead in setting up the different mechanisms.
* Be sensitive to speed and performance. Take time to determine which parts of your system can have a significant impact on performance: Where are the bottlenecks and why? Devise small tests you can do to evaluate alternatives. Profile and measure to learn more. Talk to your colleagues about these alternatives and your results, and decide on the best solution.
* Acks are expensive and tend to be avoided in distributed systems wherever possible.
* Retransmission is costly. It's important to experiment so you can tune the delay that prompts a retransmission to be optimal.
From:
http://code.google.com/edu/parallel/dsd-tutorial.html